Map loading
Last chapter we left off at creating some entities to test our rendering system, but now it's time to render a proper map. In this section we will create a text based map configuration which we will load.
Map config
First step, let's try to load a level based on a 2d map that looks like this.
N N W W W W W W
W W W . . . . W
W . . . B . . W
W . . . . . . W
W . P . . . . W
W . . . . . . W
W . . S . . . W
W . . . . . . W
W W W W W W W W
where:
. is an empty spot
W is a wall
P is the player
B is a box
S is a box spot
N is nothing: used for the outer edges of the map
Let's make a string for this, eventually we can load from a file but for simplicity let's go with a constant in the code for now.
#![allow(unused)] fn main() { pub fn initialize_level(world: &mut World) { const MAP: &str = " N N W W W W W W W W W . . . . W W . . . B . . W W . . . . . . W W . P . . . . W W . . . . . . W W . . S . . . W W . . . . . . W W W W W W W W W "; load_map(world, MAP.to_string()); } }
And here is the implementation of load map.
#![allow(unused)] fn main() { pub fn load_map(world: &mut World, map_string: String) { // read all lines let rows: Vec<&str> = map_string.trim().split('\n').map(|x| x.trim()).collect(); for (y, row) in rows.iter().enumerate() { let columns: Vec<&str> = row.split(' ').collect(); for (x, column) in columns.iter().enumerate() { // Create the position at which to create something on the map let position = Position { x: x as u8, y: y as u8, z: 0, // we will get the z from the factory functions }; // Figure out what object we should create match *column { "." => create_floor(world, position), "W" => { create_floor(world, position); create_wall(world, position); } "P" => { create_floor(world, position); create_player(world, position); } "B" => { create_floor(world, position); create_box(world, position); } "S" => { create_floor(world, position); create_box_spot(world, position); } "N" => (), c => panic!("unrecognized map item {}", c), } } } } }
The most interesting Rust concept here is probably the match
. We are using the basic feature of pattern matching here, we are simply matching on the values of each token found in the map config, but we could do a lot of more advanced conditions or types of patterns.
MORE: Read more about pattern matching here.
Now let's run the game and see what our map looks like.
Final code below.
// Rust sokoban // main.rs use glam::Vec2; use ggez::{conf, event, Context, GameResult, graphics::{self, DrawParam, Image}}; use specs::{ join::Join, Builder, Component, ReadStorage, RunNow, System, VecStorage, World, WorldExt, }; use std::path; const TILE_WIDTH: f32 = 32.0; // Components #[derive(Debug, Component, Clone, Copy)] #[storage(VecStorage)] pub struct Position { x: u8, y: u8, z: u8, } #[derive(Component)] #[storage(VecStorage)] pub struct Renderable { path: String, } #[derive(Component)] #[storage(VecStorage)] pub struct Wall {} #[derive(Component)] #[storage(VecStorage)] pub struct Player {} #[derive(Component)] #[storage(VecStorage)] pub struct Box {} #[derive(Component)] #[storage(VecStorage)] pub struct BoxSpot {} // Systems pub struct RenderingSystem<'a> { context: &'a mut Context, } // System implementation impl<'a> System<'a> for RenderingSystem<'a> { // Data type SystemData = (ReadStorage<'a, Position>, ReadStorage<'a, Renderable>); fn run(&mut self, data: Self::SystemData) { let (positions, renderables) = data; // Clearing the screen (this gives us the backround colour) graphics::clear(self.context, graphics::Color::new(0.95, 0.95, 0.95, 1.0)); // Get all the renderables with their positions and sort by the position z // This will allow us to have entities layered visually. let mut rendering_data = (&positions, &renderables).join().collect::<Vec<_>>(); rendering_data.sort_by_key(|&k| k.0.z); // Iterate through all pairs of positions & renderables, load the image // and draw it at the specified position. for (position, renderable) in rendering_data.iter() { // Load the image let image = Image::new(self.context, renderable.path.clone()).expect("expected image"); let x = position.x as f32 * TILE_WIDTH; let y = position.y as f32 * TILE_WIDTH; // draw let draw_params = DrawParam::new().dest(Vec2::new(x, y)); graphics::draw(self.context, &image, draw_params).expect("expected render"); } // Finally, present the context, this will actually display everything // on the screen. graphics::present(self.context).expect("expected to present"); } } // This struct will hold all our game state // For now there is nothing to be held, but we'll add // things shortly. struct Game { world: World, } // This is the main event loop. ggez tells us to implement // two things: // - updating // - rendering impl event::EventHandler<ggez::GameError> for Game { fn update(&mut self, _context: &mut Context) -> GameResult { Ok(()) } fn draw(&mut self, context: &mut Context) -> GameResult { // Render game entities { let mut rs = RenderingSystem { context }; rs.run_now(&self.world); } Ok(()) } } // Register components with the world pub fn register_components(world: &mut World) { world.register::<Position>(); world.register::<Renderable>(); world.register::<Player>(); world.register::<Wall>(); world.register::<Box>(); world.register::<BoxSpot>(); } // Create a wall entity pub fn create_wall(world: &mut World, position: Position) { world .create_entity() .with(Position { z: 10, ..position }) .with(Renderable { path: "/images/wall.png".to_string(), }) .with(Wall {}) .build(); } pub fn create_floor(world: &mut World, position: Position) { world .create_entity() .with(Position { z: 5, ..position }) .with(Renderable { path: "/images/floor.png".to_string(), }) .build(); } pub fn create_box(world: &mut World, position: Position) { world .create_entity() .with(Position { z: 10, ..position }) .with(Renderable { path: "/images/box.png".to_string(), }) .with(Box {}) .build(); } pub fn create_box_spot(world: &mut World, position: Position) { world .create_entity() .with(Position { z: 9, ..position }) .with(Renderable { path: "/images/box_spot.png".to_string(), }) .with(BoxSpot {}) .build(); } pub fn create_player(world: &mut World, position: Position) { world .create_entity() .with(Position { z: 10, ..position }) .with(Renderable { path: "/images/player.png".to_string(), }) .with(Player {}) .build(); } // Initialize the level pub fn initialize_level(world: &mut World) { const MAP: &str = " N N W W W W W W W W W . . . . W W . . . B . . W W . . . . . . W W . P . . . . W W . . . . . . W W . . S . . . W W . . . . . . W W W W W W W W W "; load_map(world, MAP.to_string()); } pub fn load_map(world: &mut World, map_string: String) { // read all lines let rows: Vec<&str> = map_string.trim().split('\n').map(|x| x.trim()).collect(); for (y, row) in rows.iter().enumerate() { let columns: Vec<&str> = row.split(' ').collect(); for (x, column) in columns.iter().enumerate() { // Create the position at which to create something on the map let position = Position { x: x as u8, y: y as u8, z: 0, // we will get the z from the factory functions }; // Figure out what object we should create match *column { "." => create_floor(world, position), "W" => { create_floor(world, position); create_wall(world, position); } "P" => { create_floor(world, position); create_player(world, position); } "B" => { create_floor(world, position); create_box(world, position); } "S" => { create_floor(world, position); create_box_spot(world, position); } "N" => (), c => panic!("unrecognized map item {}", c), } } } } pub fn main() -> GameResult { let mut world = World::new(); register_components(&mut world); initialize_level(&mut world); // Create a game context and event loop let context_builder = ggez::ContextBuilder::new("rust_sokoban", "sokoban") .window_setup(conf::WindowSetup::default().title("Rust Sokoban!")) .window_mode(conf::WindowMode::default().dimensions(800.0, 600.0)) .add_resource_path(path::PathBuf::from("./resources")); let (context, event_loop) = context_builder.build()?; // Create the game state let game = Game { world }; // Run the main event loop event::run(context, event_loop, game) }
CODELINK: You can see the full code in this example here.