地图加载
上一章我们创建了一些实体来测试我们的渲染系统,但现在是时候渲染一个正式的地图了。在本节中,我们将创建一个基于文本的地图配置并加载它。
地图配置
第一步,让我们尝试基于如下所示的二维地图加载一个关卡。
#![allow(unused)] fn main() { const MAP: &str = " N N W W W W W W W W W . . . . W W . . . B . . W W . . . . . . W W . P . . . . W W . . . . . . W W . . S . . . W W . . . . . . W W W W W W W W W "; 其中: . 是空白位置 W 是墙 P 是玩家 B 是箱子 S 是箱子放置点 N 是空:用于地图的外边缘 }
最终我们可以从文件中加载,但为了简单起见,现在我们先用代码中的常量。
以下是加载地图的实现。
#![allow(unused)] fn main() { // Initialize the level// Initialize the level pub fn initialize_level(world: &mut World) { const MAP: &str = " N N W W W W W W W W W . . . . W W . . . B . . W W . . . . . . W W . P . . . . W W . . . . . . W W . . S . . . W W . . . . . . W W W W W W W W W "; load_map(world, MAP.to_string()); } pub fn load_map(world: &mut World, map_string: String) { // read all lines let rows: Vec<&str> = map_string.trim().split('\n').map(|x| x.trim()).collect(); for (y, row) in rows.iter().enumerate() { let columns: Vec<&str> = row.split(' ').collect(); for (x, column) in columns.iter().enumerate() { // Create the position at which to create something on the map let position = Position { x: x as u8, y: y as u8, z: 0, // we will get the z from the factory functions }; // Figure out what object we should create match *column { "." => { create_floor(world, position); } "W" => { create_floor(world, position); create_wall(world, position); } "P" => { create_floor(world, position); create_player(world, position); } "B" => { create_floor(world, position); create_box(world, position); } "S" => { create_floor(world, position); create_box_spot(world, position); } "N" => (), c => panic!("unrecognized map item {}", c), } } } } }
这里最有趣的 Rust 概念可能是 match
。我们在这里使用了模式匹配的基本功能,仅仅是匹配地图配置中每个标记的值,但我们可以进行更高级的条件或类型模式匹配。
更多: 阅读更多关于模式匹配的信息 这里。
现在运行游戏,看看我们的地图是什么样子。
以下是最终代码。
/* ANCHOR: all */ // Rust sokoban // main.rs use ggez::{ conf, event, graphics::{self, DrawParam, Image}, Context, GameResult, }; use glam::Vec2; use hecs::{Entity, World}; use std::path; const TILE_WIDTH: f32 = 32.0; // ANCHOR: components #[derive(Clone, Copy)] pub struct Position { x: u8, y: u8, z: u8, } pub struct Renderable { path: String, } pub struct Wall {} pub struct Player {} pub struct Box {} pub struct BoxSpot {} // ANCHOR_END: components // ANCHOR: game // This struct will hold all our game state // For now there is nothing to be held, but we'll add // things shortly. struct Game { world: World, } // ANCHOR_END: game // ANCHOR: init // Initialize the level// Initialize the level pub fn initialize_level(world: &mut World) { // ANCHOR: map const MAP: &str = " N N W W W W W W W W W . . . . W W . . . B . . W W . . . . . . W W . P . . . . W W . . . . . . W W . . S . . . W W . . . . . . W W W W W W W W W "; // ANCHOR_END: map load_map(world, MAP.to_string()); } pub fn load_map(world: &mut World, map_string: String) { // read all lines let rows: Vec<&str> = map_string.trim().split('\n').map(|x| x.trim()).collect(); for (y, row) in rows.iter().enumerate() { let columns: Vec<&str> = row.split(' ').collect(); for (x, column) in columns.iter().enumerate() { // Create the position at which to create something on the map let position = Position { x: x as u8, y: y as u8, z: 0, // we will get the z from the factory functions }; // Figure out what object we should create match *column { "." => { create_floor(world, position); } "W" => { create_floor(world, position); create_wall(world, position); } "P" => { create_floor(world, position); create_player(world, position); } "B" => { create_floor(world, position); create_box(world, position); } "S" => { create_floor(world, position); create_box_spot(world, position); } "N" => (), c => panic!("unrecognized map item {}", c), } } } } // ANCHOR_END: init // ANCHOR: handler impl event::EventHandler<ggez::GameError> for Game { fn update(&mut self, _context: &mut Context) -> GameResult { Ok(()) } fn draw(&mut self, context: &mut Context) -> GameResult { // Render game entities { run_rendering(&self.world, context); } Ok(()) } } // ANCHOR_END: handler // ANCHOR: entities pub fn create_wall(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 10, ..position }, Renderable { path: "/images/wall.png".to_string(), }, Wall {}, )) } pub fn create_floor(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 5, ..position }, Renderable { path: "/images/floor.png".to_string(), }, )) } pub fn create_box(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 10, ..position }, Renderable { path: "/images/box.png".to_string(), }, Box {}, )) } pub fn create_box_spot(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 9, ..position }, Renderable { path: "/images/box_spot.png".to_string(), }, BoxSpot {}, )) } pub fn create_player(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 10, ..position }, Renderable { path: "/images/player.png".to_string(), }, Player {}, )) } // ANCHOR_END: entities // ANCHOR: rendering_system fn run_rendering(world: &World, context: &mut Context) { // Clearing the screen (this gives us the background colour) let mut canvas = graphics::Canvas::from_frame(context, graphics::Color::from([0.95, 0.95, 0.95, 1.0])); // Get all the renderables with their positions and sort by the position z // This will allow us to have entities layered visually. let mut query = world.query::<(&Position, &Renderable)>(); let mut rendering_data: Vec<(Entity, (&Position, &Renderable))> = query.into_iter().collect(); rendering_data.sort_by_key(|&k| k.1 .0.z); // Iterate through all pairs of positions & renderables, load the image // and draw it at the specified position. for (_, (position, renderable)) in rendering_data.iter() { // Load the image let image = Image::from_path(context, renderable.path.clone()).unwrap(); let x = position.x as f32 * TILE_WIDTH; let y = position.y as f32 * TILE_WIDTH; // draw let draw_params = DrawParam::new().dest(Vec2::new(x, y)); canvas.draw(&image, draw_params); } // Finally, present the canvas, this will actually display everything // on the screen. canvas.finish(context).expect("expected to present"); } // ANCHOR_END: rendering_system // ANCHOR: main pub fn main() -> GameResult { let mut world = World::new(); initialize_level(&mut world); // Create a game context and event loop let context_builder = ggez::ContextBuilder::new("rust_sokoban", "sokoban") .window_setup(conf::WindowSetup::default().title("Rust Sokoban!")) .window_mode(conf::WindowMode::default().dimensions(800.0, 600.0)) .add_resource_path(path::PathBuf::from("./resources")); let (context, event_loop) = context_builder.build()?; // Create the game state let game = Game { world }; // Run the main event loop event::run(context, event_loop, game) } // ANCHOR_END: main /* ANCHOR_END: all */
CODELINK: 你可以在 这里 查看本示例的完整代码。