渲染系统
现在是时候实现我们的第一个系统——渲染系统了。这个系统将负责在屏幕上绘制所有的实体。
渲染系统设置
首先,我们从一个空的实现开始,如下所示:
#![allow(unused)] fn main() { pub fn run_rendering(world: &World, context: &mut Context) { // TODO 添加实现 } }
最后,让我们在绘制循环中运行渲染系统。这意味着每次游戏更新时,我们都会渲染所有实体的最新状态。
#![allow(unused)] fn main() { impl event::EventHandler<ggez::GameError> for Game { fn update(&mut self, _context: &mut Context) -> GameResult { Ok(()) } fn draw(&mut self, context: &mut Context) -> GameResult { // Render game entities { run_rendering(&self.world, context); } Ok(()) } } }
现在运行游戏应该可以编译,但可能还不会有任何效果,因为我们尚未填充渲染系统的实现,也没有创建任何实体。
渲染系统实现
注意: 我们将在这里添加 glam 作为依赖项,这是一个简单快速的 3D 库,可以提供一些性能改进。
[dependencies]
ggez = "0.9.3"
hecs = "0.10.5"
以下是渲染系统的实现。它完成以下几个任务:
- 清除屏幕(确保我们不会保留前一帧渲染的状态)
- 获取所有具有可渲染组件的实体并按 z 轴排序(这样我们可以确保正确的叠加顺序,例如玩家应该在地板之上,否则我们看不到玩家)
- 遍历排序后的实体并将它们作为图像渲染
- 最后,呈现到屏幕上
#![allow(unused)] fn main() { fn run_rendering(world: &World, context: &mut Context) { // Clearing the screen (this gives us the background colour) let mut canvas = graphics::Canvas::from_frame(context, graphics::Color::from([0.95, 0.95, 0.95, 1.0])); // Get all the renderables with their positions and sort by the position z // This will allow us to have entities layered visually. let mut query = world.query::<(&Position, &Renderable)>(); let mut rendering_data: Vec<(Entity, (&Position, &Renderable))> = query.into_iter().collect(); rendering_data.sort_by_key(|&k| k.1 .0.z); // Iterate through all pairs of positions & renderables, load the image // and draw it at the specified position. for (_, (position, renderable)) in rendering_data.iter() { // Load the image let image = Image::from_path(context, renderable.path.clone()).unwrap(); let x = position.x as f32 * TILE_WIDTH; let y = position.y as f32 * TILE_WIDTH; // draw let draw_params = DrawParam::new().dest(Vec2::new(x, y)); canvas.draw(&image, draw_params); } // Finally, present the canvas, this will actually display everything // on the screen. canvas.finish(context).expect("expected to present"); } }
添加一些测试实体
让我们创建一些测试实体以确保工作正常。
#![allow(unused)] fn main() { // Initialize the level pub fn initialize_level(world: &mut World) { create_player( world, Position { x: 0, y: 0, z: 0, // we will get the z from the factory functions }, ); create_wall( world, Position { x: 1, y: 0, z: 0, // we will get the z from the factory functions }, ); create_box( world, Position { x: 2, y: 0, z: 0, // we will get the z from the factory functions }, ); } }
最后,让我们将所有内容组合在一起并运行。你应该会看到类似这样的效果!这非常令人兴奋,现在我们有了一个正式的渲染系统,我们终于可以在屏幕上看到一些东西了。接下来,我们将开始处理游戏玩法,使其真正像一个游戏!
以下是最终代码。
注意: 请注意,这是渲染的一个非常基本的实现,随着实体数量的增加,性能可能不足够好。一个更高级的渲染实现使用批量渲染,可以在第 3 章 - 批量渲染中找到。
/* ANCHOR: all */ // Rust sokoban // main.rs use ggez::{ conf, event, graphics::{self, DrawParam, Image}, Context, GameResult, }; use glam::Vec2; use hecs::{Entity, World}; use std::path; const TILE_WIDTH: f32 = 32.0; // ANCHOR: components pub struct Position { x: u8, y: u8, z: u8, } pub struct Renderable { path: String, } pub struct Wall {} pub struct Player {} pub struct Box {} pub struct BoxSpot {} // ANCHOR_END: components // ANCHOR: game // This struct will hold all our game state // For now there is nothing to be held, but we'll add // things shortly. struct Game { world: World, } // ANCHOR_END: game // ANCHOR: init // Initialize the level pub fn initialize_level(world: &mut World) { create_player( world, Position { x: 0, y: 0, z: 0, // we will get the z from the factory functions }, ); create_wall( world, Position { x: 1, y: 0, z: 0, // we will get the z from the factory functions }, ); create_box( world, Position { x: 2, y: 0, z: 0, // we will get the z from the factory functions }, ); } // ANCHOR_END: init // ANCHOR: handler impl event::EventHandler<ggez::GameError> for Game { fn update(&mut self, _context: &mut Context) -> GameResult { Ok(()) } fn draw(&mut self, context: &mut Context) -> GameResult { // Render game entities { run_rendering(&self.world, context); } Ok(()) } } // ANCHOR_END: handler // ANCHOR: entities pub fn create_wall(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 10, ..position }, Renderable { path: "/images/wall.png".to_string(), }, Wall {}, )) } pub fn create_floor(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 5, ..position }, Renderable { path: "/images/floor.png".to_string(), }, )) } pub fn create_box(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 10, ..position }, Renderable { path: "/images/box.png".to_string(), }, Box {}, )) } pub fn create_box_spot(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 9, ..position }, Renderable { path: "/images/box_spot.png".to_string(), }, BoxSpot {}, )) } pub fn create_player(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 10, ..position }, Renderable { path: "/images/player.png".to_string(), }, Player {}, )) } // ANCHOR_END: entities // ANCHOR: rendering_system fn run_rendering(world: &World, context: &mut Context) { // Clearing the screen (this gives us the background colour) let mut canvas = graphics::Canvas::from_frame(context, graphics::Color::from([0.95, 0.95, 0.95, 1.0])); // Get all the renderables with their positions and sort by the position z // This will allow us to have entities layered visually. let mut query = world.query::<(&Position, &Renderable)>(); let mut rendering_data: Vec<(Entity, (&Position, &Renderable))> = query.into_iter().collect(); rendering_data.sort_by_key(|&k| k.1 .0.z); // Iterate through all pairs of positions & renderables, load the image // and draw it at the specified position. for (_, (position, renderable)) in rendering_data.iter() { // Load the image let image = Image::from_path(context, renderable.path.clone()).unwrap(); let x = position.x as f32 * TILE_WIDTH; let y = position.y as f32 * TILE_WIDTH; // draw let draw_params = DrawParam::new().dest(Vec2::new(x, y)); canvas.draw(&image, draw_params); } // Finally, present the canvas, this will actually display everything // on the screen. canvas.finish(context).expect("expected to present"); } // ANCHOR_END: rendering_system // ANCHOR: main pub fn main() -> GameResult { let world = World::new(); // Create a game context and event loop let context_builder = ggez::ContextBuilder::new("rust_sokoban", "sokoban") .window_setup(conf::WindowSetup::default().title("Rust Sokoban!")) .window_mode(conf::WindowMode::default().dimensions(800.0, 600.0)) .add_resource_path(path::PathBuf::from("./resources")); let (context, event_loop) = context_builder.build()?; // Create the game state let game = Game { world }; // Run the main event loop event::run(context, event_loop, game) } // ANCHOR_END: main /* ANCHOR_END: all */
CODELINK: 你可以在 这里 查看本示例的完整代码。