渲染系统
是时候开始创建第一个系统(system
)了——渲染系统。这个系统负责把实体绘制到屏幕上,也就是能不能在窗口上看见点东西就看它的了。
渲染系统走起
首先我们定义个结构体RenderingSystem
,它需要使用ggez
的上下文对象(context
)绘制实体。
#![allow(unused)] fn main() { pub struct RenderingSystem<'a> { context: &'a mut Context, } }
注意代码中的'a, ' 可不是单引号哦,在你的键盘上应该也是Esc
键下面的那个建。这是什么东东,为何写法如此奇怪嘞?这是Rust的生命周期声明语法。因为Rust编译器自己推断不出结构体RenderingSystem
持有的Context
引用的有效性,所以需要我们使用生命周期声明语法告诉它。
MORE: 更深入的了解生命周期请点 这里.
接下来我们需要为结构体RenderingSystem
实现System
特征。当前只是编写个架子,并不对方法做具体实现。
#![allow(unused)] fn main() { // System implementation impl<'a> System<'a> for RenderingSystem<'a> { // Data type SystemData = (ReadStorage<'a, Position>, ReadStorage<'a, Renderable>); fn run(&mut self, data: Self::SystemData) { let (positions, renderables) = data; // implementation here } } }
代码中定义的SystemData
类型是方便访问位置和可渲染存储信息的。我们使用了只读存储ReadStorage
,也就是只读取数据不修改数据。
最后在绘制循环中运行渲染系统。也就是当每次游戏更新时也同时根据实体的最新状态重新绘制实体。
#![allow(unused)] fn main() { impl event::EventHandler<ggez::GameError> for Game { fn update(&mut self, _context: &mut Context) -> GameResult { Ok(()) } fn draw(&mut self, context: &mut Context) -> GameResult { // Render game entities { let mut rs = RenderingSystem { context }; rs.run_now(&self.world); } Ok(()) } } }
现在我们的代码是可以编译运行的,但是依然看不到任何东西,因为我们还没编写渲染的逻辑代码,也还没创建实体。
实现渲染系统
实现渲染系统需要做这些事:
- 清空屏幕(确保不显示过去的
帧
) - 获取所有具备可渲染组件的实体,并按空间z轴排列好后渲染。这样可以保证实体可以一层一层累加渲染,比如玩家应该在地板上面,不然我们就看不到他了。
- 按排列好的顺序一个一个的把实体渲染为图片展示。
- 最后就可以在屏幕上看到它们了。
#![allow(unused)] fn main() { fn run(&mut self, data: Self::SystemData) { let (positions, renderables) = data; // Clearing the screen (this gives us the background colour) graphics::clear(self.context, graphics::Color::new(0.95, 0.95, 0.95, 1.0)); // Get all the renderables with their positions and sort by the position z // This will allow us to have entities layered visually. let mut rendering_data = (&positions, &renderables).join().collect::<Vec<_>>(); rendering_data.sort_by_key(|&k| k.0.z); // Iterate through all pairs of positions & renderables, load the image // and draw it at the specified position. for (position, renderable) in rendering_data.iter() { // Load the image let image = Image::new(self.context, renderable.path.clone()).expect("expected image"); let x = position.x as f32 * TILE_WIDTH; let y = position.y as f32 * TILE_WIDTH; // draw let draw_params = DrawParam::new().dest(Vec2::new(x, y)); graphics::draw(self.context, &image, draw_params).expect("expected render"); } // Finally, present the context, this will actually display everything // on the screen. graphics::present(self.context).expect("expected to present"); } }
添加实体测试下
接下来我们创建一些用来测试的实体,验证下我们的代码是不是可以正常工作。
#![allow(unused)] fn main() { pub fn initialize_level(world: &mut World) { create_player( world, Position { x: 0, y: 0, z: 0, // we will get the z from the factory functions }, ); create_wall( world, Position { x: 1, y: 0, z: 0, // we will get the z from the factory functions }, ); create_box( world, Position { x: 2, y: 0, z: 0, // we will get the z from the factory functions }, ); } }
最后我们把所有这些都整合到一起,然后编译运行,你会看到:
是不是小激动?这是我们第一次实现了个渲染系统在窗口上绘制出了点东西。小激动一下就可以了,毕竟现在还只是显示了些静态的图片还不能称之为游戏,后面我们会让它更像个游戏。
最终的代码是这个样子的:
注意: 当前实现的渲染系统还比较简单,随着实体的增多可能会有性能问题。在第三章的批量渲染章节我们还会做些优化,敬请期待!
// Rust sokoban // main.rs use glam::Vec2; use ggez::{conf, event, Context, GameResult, graphics::{self, DrawParam, Image}}; use specs::{ join::Join, Builder, Component, ReadStorage, RunNow, System, VecStorage, World, WorldExt, }; use std::path; const TILE_WIDTH: f32 = 32.0; // Components #[derive(Debug, Component, Clone, Copy)] #[storage(VecStorage)] pub struct Position { x: u8, y: u8, z: u8, } #[derive(Component)] #[storage(VecStorage)] pub struct Renderable { path: String, } #[derive(Component)] #[storage(VecStorage)] pub struct Wall {} #[derive(Component)] #[storage(VecStorage)] pub struct Player {} #[derive(Component)] #[storage(VecStorage)] pub struct Box {} #[derive(Component)] #[storage(VecStorage)] pub struct BoxSpot {} // Systems pub struct RenderingSystem<'a> { context: &'a mut Context, } // System implementation impl<'a> System<'a> for RenderingSystem<'a> { // Data type SystemData = (ReadStorage<'a, Position>, ReadStorage<'a, Renderable>); fn run(&mut self, data: Self::SystemData) { let (positions, renderables) = data; // Clearing the screen (this gives us the background colour) graphics::clear(self.context, graphics::Color::new(0.95, 0.95, 0.95, 1.0)); // Get all the renderables with their positions and sort by the position z // This will allow us to have entities layered visually. let mut rendering_data = (&positions, &renderables).join().collect::<Vec<_>>(); rendering_data.sort_by_key(|&k| k.0.z); // Iterate through all pairs of positions & renderables, load the image // and draw it at the specified position. for (position, renderable) in rendering_data.iter() { // Load the image let image = Image::new(self.context, renderable.path.clone()).expect("expected image"); let x = position.x as f32 * TILE_WIDTH; let y = position.y as f32 * TILE_WIDTH; // draw let draw_params = DrawParam::new().dest(Vec2::new(x, y)); graphics::draw(self.context, &image, draw_params).expect("expected render"); } // Finally, present the context, this will actually display everything // on the screen. graphics::present(self.context).expect("expected to present"); } } // This struct will hold all our game state // For now there is nothing to be held, but we'll add // things shortly. struct Game { world: World, } // This is the main event loop. ggez tells us to implement // two things: // - updating // - rendering impl event::EventHandler<ggez::GameError> for Game { fn update(&mut self, _context: &mut Context) -> GameResult { Ok(()) } fn draw(&mut self, context: &mut Context) -> GameResult { // Render game entities { let mut rs = RenderingSystem { context }; rs.run_now(&self.world); } Ok(()) } } // Register components with the world pub fn register_components(world: &mut World) { world.register::<Position>(); world.register::<Renderable>(); world.register::<Player>(); world.register::<Wall>(); world.register::<Box>(); world.register::<BoxSpot>(); } // Create a wall entity pub fn create_wall(world: &mut World, position: Position) { world .create_entity() .with(Position { z: 10, ..position }) .with(Renderable { path: "/images/wall.png".to_string(), }) .with(Wall {}) .build(); } pub fn create_floor(world: &mut World, position: Position) { world .create_entity() .with(Position { z: 5, ..position }) .with(Renderable { path: "/images/floor.png".to_string(), }) .build(); } pub fn create_box(world: &mut World, position: Position) { world .create_entity() .with(Position { z: 10, ..position }) .with(Renderable { path: "/images/box.png".to_string(), }) .with(Box {}) .build(); } pub fn create_box_spot(world: &mut World, position: Position) { world .create_entity() .with(Position { z: 9, ..position }) .with(Renderable { path: "/images/box_spot.png".to_string(), }) .with(BoxSpot {}) .build(); } pub fn create_player(world: &mut World, position: Position) { world .create_entity() .with(Position { z: 10, ..position }) .with(Renderable { path: "/images/player.png".to_string(), }) .with(Player {}) .build(); } // Initialize the level pub fn initialize_level(world: &mut World) { create_player( world, Position { x: 0, y: 0, z: 0, // we will get the z from the factory functions }, ); create_wall( world, Position { x: 1, y: 0, z: 0, // we will get the z from the factory functions }, ); create_box( world, Position { x: 2, y: 0, z: 0, // we will get the z from the factory functions }, ); } pub fn main() -> GameResult { let mut world = World::new(); register_components(&mut world); initialize_level(&mut world); // Create a game context and event loop let context_builder = ggez::ContextBuilder::new("rust_sokoban", "sokoban") .window_setup(conf::WindowSetup::default().title("Rust Sokoban!")) .window_mode(conf::WindowMode::default().dimensions(800.0, 600.0)) .add_resource_path(path::PathBuf::from("./resources")); let (context, event_loop) = context_builder.build()?; // Create the game state let game = Game { world }; // Run the main event loop event::run(context, event_loop, game) }
CODELINK: 可以点 这里获取本章节完整代码.