推动箱子
在上一章中,我们让玩家可以移动,但他可以穿过墙壁和箱子,并没有真正与环境交互。在本节中,我们将为玩家的移动添加一些更智能的逻辑。
移动组件
首先,我们需要让代码稍微更通用一些。如果你还记得上一章,我们是通过操作玩家来决定如何移动他们的,但我们也需要移动箱子。此外,将来我们可能会引入其他可移动类型的对象,因此我们需要考虑到这一点。按照真正的 ECS 精神,我们将使用标记组件来区分哪些实体是可移动的,哪些不是。例如,玩家和箱子是可移动的,而墙是不可移动的。箱子放置点在这里无关紧要,因为它们不会移动,但它们也不应该影响玩家或箱子的移动,因此箱子放置点不会具有这些组件中的任何一个。
以下是我们的两个新组件:
#![allow(unused)] fn main() { pub struct Movable; pub struct Immovable; }
接下来,我们将:
- 为玩家和箱子添加
with(Movable)
- 为墙添加
with(Immovable)
- 对地板和箱子放置点不做任何操作(如前所述,它们不应成为我们的移动/碰撞系统的一部分,因为它们对移动没有影响)
#![allow(unused)] fn main() { pub fn create_wall(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 10, ..position }, Renderable { path: "/images/wall.png".to_string(), }, Wall {}, Immovable {}, )) } pub fn create_floor(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 5, ..position }, Renderable { path: "/images/floor.png".to_string(), }, )) } pub fn create_box(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 10, ..position }, Renderable { path: "/images/box.png".to_string(), }, Box {}, Movable {}, )) } pub fn create_box_spot(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 9, ..position }, Renderable { path: "/images/box_spot.png".to_string(), }, BoxSpot {}, )) } pub fn create_player(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 10, ..position }, Renderable { path: "/images/player.png".to_string(), }, Player {}, Movable {}, )) } }
移动需求
现在让我们思考一些示例来说明移动的需求。这将帮助我们理解如何修改输入系统的实现以正确使用 Movable
和 Immovable
。
场景:
(player, floor)
并按下RIGHT
-> 玩家应该向右移动(player, wall)
并按下RIGHT
-> 玩家不应向右移动(player, box, floor)
并按下RIGHT
-> 玩家应该向右移动,箱子也应该向右移动(player, box, wall)
并按下RIGHT
-> 没有任何东西应该移动(player, box, box, floor)
并按下RIGHT
-> 玩家、箱子1 和箱子2 应该都向右移动一格(player, box, box, wall)
并按下RIGHT
-> 没有任何东西应该移动
基于这些场景,我们可以做出以下观察:
- 碰撞/移动检测应该一次性处理所有涉及的对象——例如,对于场景 6,如果我们逐个处理,每次处理一个对象,我们会先移动玩家,再移动第一个箱子,当我们处理第二个箱子时发现无法移动,此时需要回滚所有的移动操作,这是不可行的。因此,对于每个输入,我们必须找出所有涉及的对象,并整体判断该动作是否可行。
- 一条包含空位的可移动链可以移动(空位在此表示既非可移动也非不可移动的东西)
- 一条包含不可移动位置的可移动链不能移动
- 尽管所有示例都是向右移动,这些规则应该可以推广到任何方向,按键仅仅影响我们如何找到链条
因此,基于这些规则,让我们开始实现这个逻辑。以下是我们需要的逻辑模块的一些初步想法:
- 找到所有可移动和不可移动的实体 - 这样我们可以判断它们是否受到移动的影响
- 根据按键确定移动方向 - 我们在上一节已经大致解决了这个问题,基本上是一些基于按键枚举的 +1/-1 操作
- 遍历从玩家到地图边缘的所有位置,根据方向确定轴线——例如,如果按下右键,我们需要从
player.x
遍历到map_width
,如果按下上键,我们需要从0
遍历到player.y
- 对于序列中的每个格子 我们需要:
- 如果格子是可移动的,继续并记住这个格子
- 如果格子不可移动,停止并不移动任何东西
- 如果格子既不可移动也不可移动,移动我们记住的所有格子
以下是输入系统的新实现,有点长,但希望能理解。
#![allow(unused)] fn main() { fn run_input(world: &World, context: &mut Context) { let mut to_move: Vec<(Entity, KeyCode)> = Vec::new(); // get all the movables and immovables let mov: HashMap<(u8, u8), Entity> = world .query::<(&Position, &Movable)>() .iter() .map(|t| ((t.1 .0.x, t.1 .0.y), t.0)) .collect::<HashMap<_, _>>(); let immov: HashMap<(u8, u8), Entity> = world .query::<(&Position, &Immovable)>() .iter() .map(|t| ((t.1 .0.x, t.1 .0.y), t.0)) .collect::<HashMap<_, _>>(); for (_, (position, _player)) in world.query::<(&mut Position, &Player)>().iter() { if context.keyboard.is_key_repeated() { continue; } // Now iterate through current position to the end of the map // on the correct axis and check what needs to move. let key = if context.keyboard.is_key_pressed(KeyCode::Up) { KeyCode::Up } else if context.keyboard.is_key_pressed(KeyCode::Down) { KeyCode::Down } else if context.keyboard.is_key_pressed(KeyCode::Left) { KeyCode::Left } else if context.keyboard.is_key_pressed(KeyCode::Right) { KeyCode::Right } else { continue; }; let (start, end, is_x) = match key { KeyCode::Up => (position.y, 0, false), KeyCode::Down => (position.y, MAP_HEIGHT - 1, false), KeyCode::Left => (position.x, 0, true), KeyCode::Right => (position.x, MAP_WIDTH - 1, true), _ => continue, }; let range = if start < end { (start..=end).collect::<Vec<_>>() } else { (end..=start).rev().collect::<Vec<_>>() }; for x_or_y in range { let pos = if is_x { (x_or_y, position.y) } else { (position.x, x_or_y) }; // find a movable // if it exists, we try to move it and continue // if it doesn't exist, we continue and try to find an immovable instead match mov.get(&pos) { Some(entity) => to_move.push((*entity, key)), None => { // find an immovable // if it exists, we need to stop and not move anything // if it doesn't exist, we stop because we found a gap match immov.get(&pos) { Some(_id) => to_move.clear(), None => break, } } } } } // Now actually move what needs to be moved for (entity, key) in to_move { let mut position = world.get::<&mut Position>(entity).unwrap(); match key { KeyCode::Up => position.y -= 1, KeyCode::Down => position.y += 1, KeyCode::Left => position.x -= 1, KeyCode::Right => position.x += 1, _ => (), } } } }
现在运行代码,你会发现它真的有效了!我们不能再穿过墙壁,可以推动箱子,当箱子碰到墙时会停下。
以下是完整代码。
/* ANCHOR: all */ // Rust sokoban // main.rs use ggez::{ conf, event, graphics::{self, DrawParam, Image}, input::keyboard::KeyCode, Context, GameResult, }; use glam::Vec2; use hecs::{Entity, World}; use std::collections::HashMap; use std::path; const TILE_WIDTH: f32 = 32.0; const MAP_WIDTH: u8 = 8; const MAP_HEIGHT: u8 = 9; // ANCHOR: components #[derive(Clone, Copy, Eq, Hash, PartialEq)] pub struct Position { x: u8, y: u8, z: u8, } pub struct Renderable { path: String, } pub struct Wall {} pub struct Player {} pub struct Box {} pub struct BoxSpot {} // ANCHOR: components_movement pub struct Movable; pub struct Immovable; // ANCHOR_END: components_movement // ANCHOR_END: components // ANCHOR: game // This struct will hold all our game state // For now there is nothing to be held, but we'll add // things shortly. struct Game { world: World, } // ANCHOR_END: game // ANCHOR: init // Initialize the level// Initialize the level pub fn initialize_level(world: &mut World) { const MAP: &str = " N N W W W W W W W W W . . . . W W . . . B . . W W . . . . . . W W . P . . . . W W . . . . . . W W . . S . . . W W . . . . . . W W W W W W W W W "; load_map(world, MAP.to_string()); } pub fn load_map(world: &mut World, map_string: String) { // read all lines let rows: Vec<&str> = map_string.trim().split('\n').map(|x| x.trim()).collect(); for (y, row) in rows.iter().enumerate() { let columns: Vec<&str> = row.split(' ').collect(); for (x, column) in columns.iter().enumerate() { // Create the position at which to create something on the map let position = Position { x: x as u8, y: y as u8, z: 0, // we will get the z from the factory functions }; // Figure out what object we should create match *column { "." => { create_floor(world, position); } "W" => { create_floor(world, position); create_wall(world, position); } "P" => { create_floor(world, position); create_player(world, position); } "B" => { create_floor(world, position); create_box(world, position); } "S" => { create_floor(world, position); create_box_spot(world, position); } "N" => (), c => panic!("unrecognized map item {}", c), } } } } // ANCHOR_END: init // ANCHOR: handler impl event::EventHandler<ggez::GameError> for Game { fn update(&mut self, context: &mut Context) -> GameResult { // Run input system { run_input(&self.world, context); } Ok(()) } fn draw(&mut self, context: &mut Context) -> GameResult { // Render game entities { run_rendering(&self.world, context); } Ok(()) } } // ANCHOR_END: handler // ANCHOR: entities pub fn create_wall(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 10, ..position }, Renderable { path: "/images/wall.png".to_string(), }, Wall {}, Immovable {}, )) } pub fn create_floor(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 5, ..position }, Renderable { path: "/images/floor.png".to_string(), }, )) } pub fn create_box(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 10, ..position }, Renderable { path: "/images/box.png".to_string(), }, Box {}, Movable {}, )) } pub fn create_box_spot(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 9, ..position }, Renderable { path: "/images/box_spot.png".to_string(), }, BoxSpot {}, )) } pub fn create_player(world: &mut World, position: Position) -> Entity { world.spawn(( Position { z: 10, ..position }, Renderable { path: "/images/player.png".to_string(), }, Player {}, Movable {}, )) } // ANCHOR_END: entities // ANCHOR: rendering_system fn run_rendering(world: &World, context: &mut Context) { // Clearing the screen (this gives us the background colour) let mut canvas = graphics::Canvas::from_frame(context, graphics::Color::from([0.95, 0.95, 0.95, 1.0])); // Get all the renderables with their positions and sort by the position z // This will allow us to have entities layered visually. let mut query = world.query::<(&Position, &Renderable)>(); let mut rendering_data: Vec<(Entity, (&Position, &Renderable))> = query.into_iter().collect(); rendering_data.sort_by_key(|&k| k.1 .0.z); // Iterate through all pairs of positions & renderables, load the image // and draw it at the specified position. for (_, (position, renderable)) in rendering_data.iter() { // Load the image let image = Image::from_path(context, renderable.path.clone()).unwrap(); let x = position.x as f32 * TILE_WIDTH; let y = position.y as f32 * TILE_WIDTH; // draw let draw_params = DrawParam::new().dest(Vec2::new(x, y)); canvas.draw(&image, draw_params); } // Finally, present the canvas, this will actually display everything // on the screen. canvas.finish(context).expect("expected to present"); } // ANCHOR_END: rendering_system // ANCHOR: input_system fn run_input(world: &World, context: &mut Context) { let mut to_move: Vec<(Entity, KeyCode)> = Vec::new(); // get all the movables and immovables let mov: HashMap<(u8, u8), Entity> = world .query::<(&Position, &Movable)>() .iter() .map(|t| ((t.1 .0.x, t.1 .0.y), t.0)) .collect::<HashMap<_, _>>(); let immov: HashMap<(u8, u8), Entity> = world .query::<(&Position, &Immovable)>() .iter() .map(|t| ((t.1 .0.x, t.1 .0.y), t.0)) .collect::<HashMap<_, _>>(); for (_, (position, _player)) in world.query::<(&mut Position, &Player)>().iter() { if context.keyboard.is_key_repeated() { continue; } // Now iterate through current position to the end of the map // on the correct axis and check what needs to move. let key = if context.keyboard.is_key_pressed(KeyCode::Up) { KeyCode::Up } else if context.keyboard.is_key_pressed(KeyCode::Down) { KeyCode::Down } else if context.keyboard.is_key_pressed(KeyCode::Left) { KeyCode::Left } else if context.keyboard.is_key_pressed(KeyCode::Right) { KeyCode::Right } else { continue; }; let (start, end, is_x) = match key { KeyCode::Up => (position.y, 0, false), KeyCode::Down => (position.y, MAP_HEIGHT - 1, false), KeyCode::Left => (position.x, 0, true), KeyCode::Right => (position.x, MAP_WIDTH - 1, true), _ => continue, }; let range = if start < end { (start..=end).collect::<Vec<_>>() } else { (end..=start).rev().collect::<Vec<_>>() }; for x_or_y in range { let pos = if is_x { (x_or_y, position.y) } else { (position.x, x_or_y) }; // find a movable // if it exists, we try to move it and continue // if it doesn't exist, we continue and try to find an immovable instead match mov.get(&pos) { Some(entity) => to_move.push((*entity, key)), None => { // find an immovable // if it exists, we need to stop and not move anything // if it doesn't exist, we stop because we found a gap match immov.get(&pos) { Some(_id) => to_move.clear(), None => break, } } } } } // Now actually move what needs to be moved for (entity, key) in to_move { let mut position = world.get::<&mut Position>(entity).unwrap(); match key { KeyCode::Up => position.y -= 1, KeyCode::Down => position.y += 1, KeyCode::Left => position.x -= 1, KeyCode::Right => position.x += 1, _ => (), } } } // ANCHOR_END: input_system // ANCHOR: main pub fn main() -> GameResult { let mut world = World::new(); initialize_level(&mut world); // Create a game context and event loop let context_builder = ggez::ContextBuilder::new("rust_sokoban", "sokoban") .window_setup(conf::WindowSetup::default().title("Rust Sokoban!")) .window_mode(conf::WindowMode::default().dimensions(800.0, 600.0)) .add_resource_path(path::PathBuf::from("./resources")); let (context, event_loop) = context_builder.build()?; // Create the game state let game = Game { world }; // Run the main event loop event::run(context, event_loop, game) } // ANCHOR_END: main /* ANCHOR_END: all */
CODELINK: 你可以在 这里 查看本示例的完整代码。